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1. MATHEMATICAL DEVELOPMENT OF HISS

1.0 Introduction

NASA is active in research on supersonic combustion [1-3]. Of
particular interest are methods for injecting hydrogen in a supersonic
air stream in a manner which achieves effective mixing and a minimum
pressure loss. Two arrangements of interest are shown in Figures
(1.0-1) and (1.0-2).

This report provides documentation of a finite-difference computer
program called HISS (Hydrogen Injection of a Supersonic Stream] which
was developed by FMTS under contract to NASA for the exclusive use of
NASA; it can be used to predict the flow properties for cases depicted
in Figures (1.0-1) and (1.0-2).

Hydrogen jets

Main Air
Stream

Figure 1.0~ 1 Normal Injection



Air Stream
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Hydrogen Jets

Figure 1.0—2 Parallel Injection

The remaining part of this chapter gives the mathematical equations
which are used to model the flow process. The "art" involved in using
these equations to develop a finite-difference algorithm for these
equations is also described.

1.1 Capabilities and limitations of HISS

HISS is capable of calculating three-dimensional, boundary layer
flows which are either external or internal. The geometry considered
is flow in a fixed rectangular parallelepiped with "zero-flux" boundary
conditions on each side wall, either a free, symmetry or solid wall at
the top surface and either a symmetry or wall boundary condition at the
bottom surface. It can handle injection of hydrogen ranging from
normal to parallel to the main air stream. Five equilibrium reactions
are allowed. The main air flow can be either subsonic or supersonic;
however, the free stream pressure gradient is considered to be zero.

The flow is considered turbulent and the yiscosity is calculated
by way of the "k-¢" turbulence model described in [4]. Density is
calculated via the ideal gas Taw.

1.2 Numerical method
The numerical method used is described in detail in [5]. A brief

discussion will be made to summayize the method.




1.2-1 The differential equation

The general differential equation describing the transport of a
fluid property ¢ is expressed in Cartesian coordinates as follows for
the fixed volume under consideration:

2 2 2 = 2 (p, Ay 42 (p 2
ox (pue) + 5 (ove) + 55 (owe) So * 3% Ty 3x) * oy Ty 5y)
(1.2-1)

where x, ¥y, and z are Cartesian coordinates as illustrated in Figure (1.2-1).
¢ is a general dependent yariable.

The governing equations which must be solved are: continuity,
momentum equations for each coordinate direction, the energy equation,
an equation expressing conservation of total hydrogen and two differential
equations for turbulence properties. These equations allow calculations
of eight dependent variables, namely u, v, w, p, f, h, k and e. All of
these equations except continuity haye the form of equation (1.2-1) and
the respective source terms and transport coefficients are given in
Table (1.2-1). The calculation of pressure is described in Section 1.5.

N boundary

S boundary

Main
Flow
X
Figure 1.2—-1 Coordinate Systems



For these variables, the appropriate transport and source terms
are given in Table (1.2-1).
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u Yeff ax (leff 3x) ~ Bx T 3y (u g 3%
k) vy _p, 3 au
v Veff oy (eff ay) "y T ax (Veff by
W Hoff See Section 1.7

u
‘ A '
“tk % ;
oV U
o
c 3uy 2 avy2 awy 2 AWy 2
C1 ¢ ut{Z[(BX) (ay) ] + (ax) (ay)
€ ]the + ]J_1
t,e % KA §H.2 -C Efi
9X  ay 2k
- R — o
~ g—y [ Oeff — (Cerr,p -1 /2]
h M eff,h oy
t .
o ' L[UEH IPRIE
9X 1o ff,F e ’ X
u
I 0
%t f OFf

Table (1.2-1)
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Values for the laminar Prandtl number, o, and the turbulent Prandtl
number Ot along with C] and CZ required in the source term of the k and
e equations are given in Table (1.2-2). Also given are

¢ Ceff,¢ o

k 1.0 i

€ 1.3 .7

h .9 .7

f .9 .7
K E Cp C; G,
42 9.0 .09 1.44 1.92

Table (1.2-2)

K and E which are constants required in the law-of-the-wall formulation
described in section 1.6-4 and the constant CD used to obtain the
dissipation length scale in equation 1.3-2.

1.3 Auxiliary information

In addition to the partial differential equations the complete
specification of the problem requires provision of auxiliary information
of three types: boundary conditions, physical hypotheses which permit
the calculation of diffusion coefficients as well as sources and sinks
of each variable, and certain relationships among the thermodynamic
and transport properties required to describe the flow.

1.3-1 Boundary conditions

For each of the seven variables 1isted in Table (1.2-1), values
must be specified in the z = Q0 plane. In addition, boundary conditions
along the N and S surface [see Figure (1.2-1)] must be specified for each
of these variables. These boundary conditions can'be specified



as the value of the variable ¢ or the flux of ¢ through the surface. A
detailed discussion of boundary conditions is given in Section 1.6.

1.3-2 Physical hypotheses

The gas density is calculated by the ideal gas Taw. Details are
given in Section 1.7 since special procedures are required to treat mixed
subsonic-supersonic flow.

The laminar viscosity is calculated by the formulas presented on
page 58 of reference [6] and will not be repeated here.

The turbulent viscosity is calculated by solving conservation equa-
tions for the kinetic energy of turbulent fluctuating motion, k, and the
energy dissipation rate, €. The turbulent viscosity is then given by:

b ok 28 (1.3-1)

where £ is a dissipation length scale which can be determined from the
equation for ¢, i.e.:

C k3/2
. = D (1.3-2)

€

Equatijons (1.3-1) and (1.3-2) are the basis by which the effective turbu-
lent viscosity is calculated by the k-e¢ model.

1.3-3 Thermodynamic and transport relationships

In order to calculate properties such as laminar viscosity or
temperature, it is necessary to know the mass fraction of each chemical
specie present at a given location. Thermodynamic equilibrium is assumed
so that from the local temperature, pressure, and element fractions the
specie mass fraction distribution is calculated. This technique was
developed in this work and is reported in detail in Appendix A.
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Another important relationship is between the stagnation enthalpy
and temperature. This relationship is:

2 2 4+ w2
F o= gm..p%+ UZF VT WP

£ Z *Cp (T -

Tref)

where Cp is the mixture specific heat and Tref is the reference tempera-
ture for which the specie enthalpy of formation, h?, is based. For this
work Tref = 0°K. Note that Cp is defined by:

T
h-h
_ 1 .,. ref
C, = =——/— C dT = ==
p T-T p T-T
ref Tref ref

where h is the sensible enthalpy at the temperature T. Therefore, the
definition takes into account the variation of specific heat with tempera-
ture.

The density is assumed to vary according to the ideal gas law,
namely:

1.4 The discretization procedure

The finite-difference equivalents of the differential equations are
obtained by integrating the latter over the control volumes which surround
the nodes of a grid system. For purposes of this integration, the de-
pendent variables are presumed to vary in a prescribed manner between grid
nodes; details of this are available in Patankar and Spalding [5].

1.4-1 The grid system

The grid system used is indicated in Figure (1.4-1). It consists of
a system of orthogonal intersecting grid lines in the x-y plane corre-
sponding to a constant value of z.



Boundary

Variable

Figure |.4—-1 Grid System

1.4-2 Storage locations

Figure (1.4-1) also indicates the fact that the u and v velocity
components are located at points in the grid regularly displaced from
the points where all other variables are stored. The boomerang-shaped
envelopes enclose the triads of points denoted by the single letter N, S,
E, W or P, and represent a unique computer storage location.

1.4-3 Control volumes

The control volume surrounding each grid node P, is indicated by
dashed 1ines in Figure (1.4-2), and is termed the main control volume.
Control volumes appropriate to the u and v velocity components are '"stag-



Forward

Step
Az

Control

Volume
Downstream
Y / Station
Y4
X v Upstream
- Station

Figure 1.4-2 Main Control Volume

gered" from such main control volumes; the faces of the former being
arranged to pass through grid nodes where pressures are stored.

The control volumes corresponding to the near-boundary velocities,
v in the case of N and S boundaries and u in the case of E and W bounda-
ries, are arranged to be somewhat larger than their size in the rest of
the calculation domain. Figure (1.4-3) illustrates this point. The
near-boundary main control volumes remain unchanged.
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U- Control Volumes

V-_Control
Volume

Figure 1.4—3 Near Boundary Velocity Control Volume

1.4-4 The general discretized equation

The general discretized equation is obtained by integrating
equation (1.2-1) over the control volume surrounding each grid node.
Such an integration is performed after making assumptions about the
manner in which the variable ¢ is distributed between grid nodes. A1l
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dependent variables are presumed so to vary, linearly in the x and
y directions and in castellated fashion along the z direction. The
result of the above-mentioned operation is an algebraic equation for
each grid location. This algebraic equation now represents the dis-
cretized form of the balance equation for ¢, over the control volume
surrounding the grid location. The balance equation is expressed
simply as: '

:
Y (oo ¥ 6) - LY
o~ Fu ¢P,u] ¥ [Ln (o * gp) - Lg (op + “’s)]
r)( X _ ¢
+ 1L (¢E + ¢P) - LW (¢P + q)w) = SP

e

e w

+ I (o - 0p) - T (9 - 4’5)] + [TX (6p = op) - T3, (9p - “’w)]

(1.4-1)

where the L's represent convective contributions, T's the diffusive
and S the source (and/or sink) contribution to the balance of ¢. The
location of points e, w, n, s, E, W, N, S is given in Figure 1.4-2.
These coefficients are defined as follows:

FU = [DW]P,U AX Ay (a)
L)rll = [pV]nszﬂ LZ = [pv]'s_A_X_ZAZ_ (b)
RN S G S

Fp = Fy-2 L:+ ng_ 2L%’+ 2'_95/ - (1.4-2)
T = P¢,eA);-xeAZ T = F"”w%‘ﬁi @)
T}; ) F¢,SAXGYASZ T{\ " Toun Ai‘s(yAZ (f)
n R

11
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Sg =S AX Ay AZ (g)

¢,P
§Xg = Xp = Xp X, = Xy = Xp (h)
8y, =V¥p - V¥g Y, =Yy~ Yp (i) (1.4-2)
ax = |xg, = X | (3)
by = |y, - ¥l (k)

where the subscripts e, w, n, s, E, W, N, S indicate location defined
in Figure 1.4-2, Az is the forward step size and s? s always expressed

in linearized form as:

¢ _ -
SP = SU + SP¢P (1.4-3)
On re-arranging the terms of equation {1.4-1), we have:
¢p = AN¢N + AS¢S + AE¢E + Aw¢w + B (1.4-4)

where the coefficients A% are defined as follows:

l_ X Xy, !

Ap = (T5 - L)/Ap (a)
(1.4-5)

|_ X Xl

Ay = (T + L)/A (b)
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B SY

T 4 Yy,
Ay = (T0 = LA (c)
] _ y 1 -
A = (TZ + L)/ (d) (1.4-5)
B = [(sy + Spop) + Fy 4 u) /Ao (e)

B = W e SR - s, ()

It is possi?le for the ratio of convective contribution L; to
the coefficient AM to become large on occasions resulting in the
coefficient becoming negative. Were equation (1.4-4) to be solved
with negative coefficients, physically implausible results would ensue.
To overcome such a possibility, a hybrid scheme, well-known as the
high-lateral-flux-modification (see Reference [5]) is introduced. This
scheme consists of replacing all the coefficients of the form T; by

f; as follows:

=N _ h o, oD n _ N 1.4-6
T T !Lm| + |Tm |Lm|| ( )

where, |L| signifies the modulus of L.

1.5 The computational algorithm

The computational algorithm embodied in HISS, is the SIMPLE
(for Semi-Implicit Method for Pressure-Linked Equations) scheme reported
in reference [5]f In brief, this scheme is described as follows.
Approximate forms of discretized momentum equations are first
solved with a guessed-at pressure-field. The resulting "starred" velocity
field is used in conjunction with the discretized continuity equation to
arrive at a distribution of "pressure-corrections," p'. These pressure-
corrections are then used in correcting the pressure and velocity fields
simultaneously. The corrected velocity fields are subsequently used in
solving the discretized forms of all other equations.

* Reference (5] describes an incompressible solution. The
algorithm used in HISS has been modified to handle compressible 13
flow as described in Section 1.7.
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Solutions to the algebraic equations themselves are obtained by the
use of standard tri-diagonal matrix algorithm (TDMA).

1.6 Boundary conditions

1.6-1 General policy

The HISS program requires the specification of boundary conditions
on the N and S boundaries. The boundaries on each side are fixed as
"zero flux" boundaries. A clear distinction is made, for all dependent
variables, between boundary values and values internal to the domain.
The main machinery of the program leayes the boundary yalues unchanged,
although it uses them in determining the internal values. Thus, the
procedure is so structured that it nominally solves the fixed-boundary-
value problem. When boundary values are not known, however, appropriate
modifications are deyised which permit the single structure to be used.
The following sections describe such modifications.

In general, boundary condition information can be supplied to the
numerical calculation procedure in one of four ways. The boundary values
of the dependent variables themselves can be modified; or the values of T
at the boundary nodes can be suitably adjusted. Alternatively, the source
terms for the near-boundary control volumes or the finite-difference
coefficients themselves can be suitably modified. HISS is equipped with
source-term modification practices.

1.6-2 Boundary conditions for transport equations

Fixed Boundary values

This is the simplest case and the user is merely required to supply
the correct boundary values at the start of the calculation procedure; or
else, if the 'fixed' boundary conditions vary in any arbitrarily specified
manner along the z direction, account can be taken of such variations by
suitably updating the boundary value of the appropriate variable.

Fixed gradients at boundaries

When the boundary value of a dependent variable is unknown but the
normal gradient or the flux of the variable at the boundary is given,
the following practice is adopted. The coefficient of the finite-difference
equations connecting the boundary node to an internal node is arranged to
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be zero. The boundary flux is then supplied through the source term
for the internal node. A common example of this is in the treatment of
planes of symmetry. The only action taken here is to set the appro-
priate finite-difference coefficient to zero.

Retrieval of unknown boundary values

In situations where boundary values of dependent variables are
unknown and the boundary coefficient has been set to zero, the value
of the dependent variable in the computer register corresponding to the
boundary node has no significance. (The wall condition is then represented
by the value at the node nearest the wall). In this pregram. no action is
taken to modify it so that the initial value of the dependent variable will
continue to prevail in such registers.
1.6-3 Boundary conditions for the pressure-correction equation

Unlike the finite-difference equations for a general variable ¢,
the pressure correction equation is programmed with the presumption that
all gradients of p' normal to boundaries are zero at the boundaries
themselves. The pressure-difference coefficients Du, DY and DY are
initialized to zero over the entire calculation domain and remain at
this value for the boundary nodes.

1.6-4 Wall functions

The expressions for I' appropriate to turbulent flow are not strictly
valid in the vicinity of wall boundaries to the flow, where laminar vis-
cosity plays an important role. If the near-boundary grid nodes are suf-
ficiently far away from walls, the turbulent viscosity can continue to be
used for internal grid nodes. However, means must be provided for the
calculation of the correct shear stresses as well as fluxes of other
dependent variables at the wall boundaries. Provisions for such calcu-
lations are made in the program, and use the so-called wall-function
concept. In this concept, the flux of a variable ¢ at a wall boundary,
is expressed as:

*near wall ~ %wall

Swall

¢

wall =~ To,wall (1.6-1)

15
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where Syall denotes the normal distance from the wall to the near-wall
point. Values of P¢,wa]1 are obtained from the presumption that in
the region adjacent to wall boundaries, the dependent variables obey,
for turbulent flow, a modified form of the semi-logarithmic law-of-
the-wall. The formulae used to calculate T

Table (1.6-1).

o, wall are provided in

¢ ¢,wall
Velocity components 0
normal to the wall
+
+
y > 11.5
L0 Byl
Velocity components K
parallel to the wall
< 11.5 u
k 0
€ -
+
+ ¥ N
y > 11.5 : =
o 1 +
eff,¢{k— n [Ey' ]+ P¢}
A11 other ¢'s
s 11.5: %
g

Table (1.6-1)



The definition of y+ in the table, is a generalization due to
Spalding [5] of the conventional form, in that :

ybo- 8B — | (1.6-2)

where § denotes the distance from the wall, at a location with which
the values of p and k are associated. The constants K and E in Table
1.2-2 are obtained from the conventional form of the law-of-the-wall:

T %m [Ey*] (1.6-3)

and are given values of 0.42 and 9.0 respectively.

The boundary conditions for k and e are provided as follows:
the diffusion of kinetic energy k, to the wall is known to be negligible
and is set to zero and a balance equation for k, regular in other respects
is solved for control volumes adjacent to wall boundaries. The diffusion
of dissipation rate ¢ to such boundaries is more difficult to express.
Instead of attempting to calculate Fa,wall » use is made of the knowledge
that the length scale 1 varies linearly with distance from the wall, in
the neighborhood of the wall. The dissipation rate is then calculated
from this length scale from:

C 3/u k /2

3
€hear wall ~ "D Ks (1.6-4)

The practice adopted is to fix €near wall to the above value, without
disturbing the general calculation procedure, in the following manner:

€
Sy = L chear wall (a)
(1.6-5)
e
Sp = -L (b)
where L is a large number, say 1030,
17
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The expression for P¢ wall for a general dependent variable ¢,
is based on the expression indicated in Table (1.6-1), the value of

P¢ being calculated from:

a ag _%
P = 9.24 O—L- 1 G——L (1.6-6)
i eff,o eff,¢

where % and ) denote the laminar and tubulent values of
Prandt1/Schmidt number appropriate to the transport of .



1.7 The treatment of compressibility

The special compressible-flow features of the computational
procedure in HISS are as follows:

1.7-1 The calculation and use of density

Two distinct densities are computed and used at each step. The
downstream density (pP) is used only in computing the mass flux in the z-
direction at the downstream face of the cell; the upstream density
(pP,U) is used for calculating lateral mass fluxes, and the upstream
axial mass flux. The two densities are calculated as follows:

_ Pp¥p g
Pp SR (1.7-1)
P,U

Ppou Yy

PPLUT R T, oy (1.7-2)

where NP is the Tocal mixture molecular weight, R is the universal gas
constant, and subscript 'UU' refers to the plane two steps upstream
of the plane in question.

1.7-2 The momentum equation in the z-direction

The source term employed in the w equation depends

on whether the local flow is subsonic or supersonic. When the flow

. e s * . -
is subsonic it is necessary , in order to render the equations para-
bolic, to write the source term as a mean pressure gradient, i.e.,

P - Py

w
=
1]
Q+é}
NIT|
(o]
N

(1.7-3)

where p denotes the mean pressure which is determined for a confined
flow from the requirements of overall continuity, as described in
reference [5]; for an unconfined flow, p is simply the free-stream pressure.

* The need for this practice is discussed in reference [5].
19




For supersonic flow, in contrast, it is possible, without destroying
the parabolic nature of the equations, to employ the Tocal pressure to
calculate the pressure gradient, i.e.,

Pp - P
s =22 " Ppu (1.7-4)

This practice, jt should be observed, allows full account to be taken of
pressure waves in supersonic flow.

1.7-3  The pressure-correction equation

The incompressible-flow form of the pressure-correction equation
given in reference [5]% must, in order to handle compressible flow, be
modified as described below.

Account must now be taken of the effect of a pressure change at P
on the mass flux at the downstream face of the cell. For supersonic flow
the mass-flux change (pw)é is related to the pressure correction p, by:

() = Lo O (5], w T (1.7-5)

where, pp* and w,* are computed from the guessed pressure Pp*s (dp/dp)P is,
from equation (1.7-1):

W,
dp) _ LU (
do} _ i 1.7-6)
(dp p R TP,U
and
w 1
O = pior (1.7-7)

and is deduced from the finite-difference form of the momentum equations,
in the manner described in reference [5].

* Note that in reference [5] the forward-marching direction is the X
direction, whereas in HISS it is the z direction.

20



For subsonic flow, equation (1.7-5) must be modified to account for
the fact that Wp no Tonger depends on Pps the modified expression is:

=fdo] L% . po -
(pw); = (aﬁ'p wp* * Pp (1.7-8)

The resulting equation for p' is of the form given in reference [5]
with the coefficients modified to account for the above-described
influences of pp' on (pw)

p

21



2. GENERAL FEATURES OF HISS

2.0 Introduction

In this chapter an overview of HISS is given with a description
of the program flow and control, and definitions of important variables.

2.1 General structure

The general structure of the HISS computer program is shown in
Figure (2.1-1). The divided, vertical box on the left is the main pro-
gram, HISS, which has the chief function of controlling the calling
sequence of the subprograms. The starting point for HISS is at the top
of this box. Points where call of subprograms are made in HISS are
denoted by horizontal lines. Arrows indicate the "flow" of the computer
program to and from the subprograms which are shown in boxes. The major
calculations and Togical decisions made by HISS are indicated in the
spaces between the horizontal lines marking calling points in HISS.

The subprograms are contained in subroutines which are not indi-
vidually called. These subroutines can be classified in three categories:
problem dependent, physical property dependent and invariant. BLOCK DATA
and ALLMOD are the problem dependent subroutines while AUX is for physical
property specification. SOLVE, STRIDA, STRIDB and PRINT are the invariant
portions of the program.

The remaining part of this chapter gives a general overyiew of the
computer program while the next chapter details the operation of each
subroutine.

2.2 Fortran equivalents of main variables
A few of the FORTRAN names used in HISS which will be required in
the following sections, are introduced here. The dependent variables ¢

are stored in an array F, which it is convenient to consider as a three-
dimensional array F (I,J,NV). Here I and J denote the Tocation (respec-
tively along the x and y directions) and NV identifies a particular
variable. The three velocity components and the pressure-correction are
included in the F array; however, for ease in understanding, separate
arrays U,V,W and PP are also used and made equivalent to parts of F as

22



i START
4 HISS
- {BLOCK DATA_ >
| CALCULATE STRIDO
| MASS
SOURCES &
l STEP \ STRIDI
| LENGTH
| BEGIN | SPECIE
| o can cew -
| CALCULATE SPECIE
| OVERALL
BALANCES
; DENSTY
| UPSTRM
| I —
| 1STEP
- VISCOS STRID2
| NPJUMP?
R YES
| 1STEP = PRINT GAMMA GAMOD
T1INJ OR
| TINJ+T YES
| MODIFY DZ INJMOD SOURCE
& NSWP
| 1STEP>LASTER  YES
————— — STOP HISS
| 1STEP=0? SOMOD
| ITERATE K,e
I U,v,w YES .
| STRID4 SOLVE
|
| STRID3 CALLS STRID2 ONCE THEN OTHER
| STRID3 SUBPROGRAMS CALLED BY STRID4 ABOVE ONCE
' 70> FOR EACH VARIABLE SOLVED. NOTE STRID3
JLAST CALLS STRID1 AFTER SOLVE FOR W VELOCITY
' ONLY.
I
]
| STRIDA ==3> SAME AS STRID4 ABOVE.
|
| o YES

=% STOP HISS

Figure 2.1-1. General Structure of HISS Computer Program
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follows:

U(I,d) = F(I,J,NYU)

v(I,d) = F(I,J,NwV) :
W(I,d) = F(I,J,NVW) (2.2-1)
PP(I,d) = F(I,J,NPP)

The identifiers NVU, NVV, NVW and NPP, also used to identify U,V,W and

PP elsewhere in the program, are assigned values 2,3,4 and 1. The Targest
values of I,J and NV for which storage is provided in the program are
denoted by IMAX, JMAX and NNV respectively and assigned values 12, 34 and
9.

Although two- and three-dimensional arrays have been mentioned above,
the computer program formally uses one-dimensional arrays, whose subscripts
are calculated, each time they are required. Thus, F(I,J,NV) is referred
to as F(IJNV), where:

IONV = T + JM(J) + NFM(NV) (2.2-2)

the arrays JM and NFM being calculated once-and-for-all from:

JM(J) = (3 - 1) = IMAX
(2.2-3)
NFM(NV) = (NV - 1) » INMAX * JMAX
Also W(I,J) is referred to as W(IJ) where:
W = 1+ JM(J) (2.2-4)

The four neighboring points of the Tocation IJ, corresponding to the
points of the compass are referred to as IJN, IJS, IJE and IJW. These
are calculated as:
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IUON = 1IJ + IMAX
IS = 1IJ - IMAX

(2.2-5)
IJE = Id+ 1
IW = IJd -1
It is easy to see that points further removed become:
IONE = TJN + 1 (2.2-6)
IdsW = IS -1 etc.

For a given problem, all members of the F arvay for which provision is
availablie, may not be required to be solved for. Furthermo?e, some of
these variables may be obtained from algebraic equations and not from
the solutions to the partial differential equation. To provide for
these alternatives, use is made of an array ISOLVE(NV). For ISOLVE(NV)
equal to zero, the differential equation is not solved; solution is
obtained for values of ISOLVE(NV) greater than zero. It is left to the
user, to make further use of this facility.

Other arrays directly related to members of the F array are:
IPRINT(NV), FU(IJ,NV), TITLE(K,NV), FLUXN(I,NV), FLUXS(I,NV). Values
of F(IJ,NV) are printed out if IPRINT(NV) is equal to 1; otherwise, a
printout is not obtained. FU(IJ,NV) stores the upstream value of
F(IJ,NV) during the iteration cycle at any given integration station.
FLUXN(I,NV), stores the fluxes of the variable NV, on the North boundary
and FLUXS(I,NV) is for the South boundary. TITLE (K,NV) with the integer
K taking values 1 to 9, stores a 36 character alphanumeric title of the
corresponding variable NV. This is used to identify the values of the
variables in the print-out.

The quantities k, e, h, f, and T form the remaining variables of the
F family. They are identified by the indices NYK, NVD, NYH, NYF, and NVT
respectively and occupy NV Tocations 5,6,7,8 and 9 in the array F(IJ,NV).
No equation is solved for T; however, it is convenient to store it at F(1J, 9).
Quantities p, p and T are stored as P(IJ), RHO{IJ) and GAM(IJ). They are
not members of the F array, but are included along with F in a COMMON
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statement, and immediately following it. They can therefore be referred
to as the (MW + 1)1, (nw + 2)™ ana (N + 3)P members of the F array,
as indeed they are in subroutine PRINT. The integers NVP, NRO and NMU
are used to identify them.
Although, in general, the values of r are different for each dependent

variable, storage provision for only one set of r''s is retained.
Hence, at a given stage in the program, the GAM array contains the
values of r, appropriate to the dependent variable under consideration.
Similarly, provision is made for the retention of one set of coeffi-
cients of the finite-difference equation at a given stage. Thus, AXP(IJ),
AXM(IJ), AYP(IJ), AYM(IJ) and AZ(1J) respectively represent the coeffi-
cients Aé, Aﬁ, A, Aé and L, in equation (1.4-5). Similarly, SU(IJ)
and SP(IJ) represent Sy and S, respectively in equation (1.4-3).
The quantities like Dg in reference [5] are stored as DU(IJ), there
being similar arrays, DV(IJ) and DW(IJ) for the corresponding quantities
associated with the v- and w- momentum equations.

KBCN and KBCS denote the type of North and South boundary respec-
tively as follows: 1 indicates symmetry, 2 indicates solid wall, and
3 indicates a free boundary.

2.3  Program control

Program control, including start, internal monitoring and stop
functions, is achieved through program DAVE.

Using the information supplied through BLOCK DATA, the first part
of DAVE calculates and assembles all the information about the grid system
through calls to STRID@ and STRID1. Following this, in the same part, a
call to BEGIN, supplies the initial conditions for all the dependent
variables.

The second part begins with the statement: 6@ CONTINUE. Following
this, mass sources, step length and the location of the station for the
new calculation, are determined. This is followed by calls to SPECIE,
DENSTY and UPSTRM. SPECIE calculates the chemical specie composition
from element compositions, temperature and pressure. DENSTY is a member
of the physical modelling subroutine AUX, wherein the fluid density p,
is calculated. UPSTRM stores the upstream variables required by the
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computation in the array FU. After calculating the overall balance of
the major F'arrays a call is made to VISCOS which calculates r. If
ISTEP equals NPJUMP profiles of variables specified by IPRINT(NV) = 1
will be printed out. Otherwise, only overall balance information and
station location will be printed out.

The next section is for the calculation of the velocity and pressure
fields. First, a check is made to see if injection occurs. If this
test is positive, a call is made to INJMOD which provides the appro-
priate boundary conditions through source terms. Next a check is made
to determine whether the station for calculation is immediately down-
stream of injection. If this test is positive the number of sweeps on
the pressure correction equation and the step length are modified to
increase accuracy and stability of the program. The calculation is
stopped at this point if ISTEP > LASTEP. Next a check is made to deter-
mine if ISTEP = 0 which if positive, results in iteration on the
hydrodynamic and turbulence equation to improve the starting profile.

After this series of tests, a call is made to STRID3 which yields
the velocity and pressure fields. A call to STRID4 performs similar
calculations for all other dependent variables. If ZU < ZLAST, control
is returned to a point in DAVE just after the CALL BEGIN statement
and the process repeated for the next station.

2.4 Detailed Tist of program variables

A1l variables used in common statements are defined in Appendix B.
Variables which appear locally are defined by their use in the computer
program and are not defined in this report.
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3. INVARIANT PORTIONS OF HISS

3.0 Introduction

Many of the calculations do not need changing for different
boundary conditions, etc. In this chapter the function of each in-
variant portion of HISS is given. Again important variables are
defined.

3.1 Calculation of grid quantities

The two sets of grid quantities specified by the user in BLOCK
DATA are LCV, MCV and ZETA(I), AGEOM. The former represent the number
of ¢-control volume faces in the x and y directions and the latter the
non-dimensional coordinate distributions of the ¢-locations in the x
direction.

Given the above information, STRID@, the first member subroutine
of STRIDA, computes the maximum number of grid nodes in the I and J
directions. This is done in the following sequence:

L = LCv+ 1

M = MCV+ 1 (3.1_1)
LP1= L+ 1

MP1 = M+ 1

It is emphasized here that users must ensure that LP1 and MP1 are always
Tess than or equal to IMAX and JMAX respectively. The Tlatter represent
the maximum dimensions of all variables in the respective directions and
are given values accordingly in BLOCK DATA. STRID@ is concluded with the
specification of the integer arrays JM and NFM in accordance with equation
(2.2-3).

The second member of STRIDA is STRID1. STRID1 is called once from
HISS. It is in STRID1 that the physical coordinates x and y are computed
from the values of AGEOM and ZETA, as follows:
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X(1)
Y(J)

Y(d - 1) + AGEOM ** (J - 2) * DELY

where DELY = BYN«* (1.0 - AGEOM)/(1.0 - AGEOM #x M). Here BXE and BYN
represent the width and height of the calculation domain respectively;
as such, they are to be specified by the user in BLOCK DATA. The above
specification of Y(J) makes use of a geometric series for specifying
successive intervals between Y(J) and Y(J - 1). Larger values of AGEOM
result in the grid being "crowded" closer to the Y = 0 surface.

Figure (3.1-1) now shows the grid in plane for a Cartesian coordinate
system and illustrates the nomenclature described below.
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Fig. (3.1-1) Grid showing numbering, main control volumes and FQRTRAN
definition of grid quantities. (Cartesian coordinates)
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The dashed lines in Figure (3.1-1) join the control-volume faces normal

to the x and y directions. These are the control volumes for all
dependent variables except the U and V velocity components. The control-
volume faces pass mid-way between the grid nodes except near the boundaries
where they pass through the boundary grid nodes. Thus, the control-

volume faces always pass through points where the velocity component

normal to the faces are stored. A normal velocity component at a control-
volume face is presumed to prevail over that whole face.

The control volumes for each of the velocity components U and V are
displaced along the directions of these velocities. The control-volume
faces normal to each of these directions pass through grid nodes on either
side of the velocity component in question. Figure (3.1-2) illustrates
this point. The geometric quantities associated with this grid system are

defined in Table 3.1-1.

u(r,J)
.
J+Ic‘(v o &
V(I+l1, J)
J 0

\
&

-0 Jr —G- ¢ ¢
I-1 I I+1

Figure 3.1-2 U- and V- Velocity Control Volumes
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TABLE 3.1-1
GRID
NO. QUANTITY MEANING
1 X(I) Physical coordinate in the x-direction.
2 XDIF(I) The difference between X(I) and X(I-1);
used as the distances § in calculating
x-direction diffusion flux of ¢: P¢A¢/6.
3 XS(I) The x-direction width of a main control
volume.
4 XSU(I) The x-direction width of a U-velocity
control volume.
5 Y(J) Physical coordinate in the y-direction.
6 YDIF(J) The difference between Y(J) and Y(J-1);
used as the distances § in calculating
y-direction diffusion flux of ¢.
7 YS(J) The y-direction width of a V-velocity
control volume.
8 YSV(4a) The y-direction width of a V-velocity
control volume.
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Because the faces of the main control volumes are stipulated to
pass midway between the grid nodes, interpolation factors for the cal-
culation of variables on these faces are equal to 0.5, except near
boundaries where they are either 0 or 1. For the control volumes
appropriate to U- and V- velocity components, however, the interpolation
factors can differ from 0.5, if the spacing between grid nodes is chosen
to be non-uniform. For this reason, interpolation factors are calculated
in STRID1 and stored as FXP(I), FXM(I), FYP(J) and FYM(J). The sub-
script refers to a grid node. The value of U for example at a grid node
(1,d) is given by:

FXP(I) % U(I + 1,d) + FXM(I) % U(I,J) (3.1-3)

it is obvious from the above that FXM(I) is simply 1.0 - FXP(I).

Calculation of the quantities tabulated above completes the tasks
performed by STRIDI. STRID1 is called once from DAVE to calculate the
initial grid quantities. Also, STRID1 is called from STRID3, after the
W- velocity equation is solved and corrected for.

3.2 Assembly of coefficients

STRID2
The STRID2 portion of STRIDA is used to calculate and store the

convective mass velocities (i.e. pu, pv and pw in equation 1.2-1,

crossing the control volume faces along the x and y directions).

The arrays GX and GY are used, respectively, to store these values.
STRID2 is called, for each integration plane, once at the beginning

of STRID3. Finally, STRIDZ is called from STRID4, after the U- and V-

velocities have been corrected.

STRID3
As referred to briefly above, STRID3 and STRID4 are the component

subroutine of STRIDB which can be regarded as the main machinery of the
HISS program. It is in STRID3, that the finite-difference equations
appropriate to U,V,W and p' are assembled, in that order. After the
appropriate equations are assembled, a call is made to SOMOD (a member
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Sigeses

subroutine of ALLMOD) to determine whether any coefficients of the
equations require modification. Once this is achieved, a call to

SOLVE permits solutions of the finite-difference equations to be
obtained. Once this preparation is completed, the coefficients of the
pressure-correction equation set are assembled and the equations solved.
STRID3 is then concluded with a section in which U's, V's and p's are
corrected.

STRID4

The assembly of and solutions to the finite-difference equations
of all other dependent variables are performed in STRID4. The primary
reason for keeping the functions of STRID3 and STRID4 apart is to permit
iterations to be performed separately on each of these subprograms. The
iterations themselves are initiated by the controlling subprogram MAIN.
This iteration is used in HISS to obtain better distribution of K and ¢
for the initial step.

3.3 Solution procedure for algebraic finite-difference equations

SOLVE
The function of the subprogram SOLVE is to arrange for the solutions
to the finite-difference equations for each dependent variable NV, to be

obtained. The solution procedure used is the application of a pair of Standard

Tri-Diagonal Matrix (TDMA) traverses, one in each of the x and y directions.

SOLVE has three major subdivisions. The first ends with the state-
ment: 1@ CONTINUE. It is in this part that the finite-difference coef-
ficients are assembled in readiness for the subsequent operations. Fully-
implicit practices are employed during the coefficient-assembly process.

The second part of SOLVE is concerned with TDMA traverses in the x
direction and ends with statement: 21 CONTINUE.

The third and final part of SOLVE starts with this statement and
concerns the TDMA traverses in the y direction.

A call to SOLVE is made from STRID3 and STRID4, once for each dependent
variable NV. This call achieves TDMA traverses in both the x and y direc-
tions; however, which traverse is made first depends upon the value of
the index IXY. The first traverse direction will be x if IXY = 1, and y
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if IXY=2. IXY is set alternately to 1 or 2 by the statement: IXY=3-IXY
which concludes both STRID3 and STRID4. The order of solution for problems
for which HISS is applicable is not important.

Along each traverse direction, the direction of sweep, i.e.
whether from the first grid node to the last or vice versa, depends
upon the value of an index, ISWP in the x direction and JSWP in the y
direction. Each of these indices takes on a value 1 or 2 by statements
which follow the end of parts 2 and 3 of SOLVE. For example, the state-
ment following: 21 CONTINUE, reads: JSWP = 3 - JSWP. A value 1 implies
that the sweep direction is from first to last grid node and 2 implies
vice versa.

On occasion, it may be required to perform more than one pair of
TDMA traverses in a x-y plane, for any given dependent variable. The
number of pairs of TDMA traverses is set by values assigned to an index
array NSWP(NV). The program is set up with NSWP values equal to three
except for the pressure-correction equation for which NSWP(NPP) = 6.

3.4 Printout of field values of dependent variables

PRINT (ISKIP, JSKIP)
It is frequently required to print out the contents of the F array.

This task is performed by subroutine PRINT.

PRINT(ISKIP, JSKIP) provides for the printout of F(I,J,NV) where
NV can attain a maximum value of NFPMAX, which is set as:

NFPMAX = NNV + 3 (3.4-1)

The three extra values representing NVP, NRO and NMU, i.e. pressure,
density and effective viscosity respectively. The decision as to whether
a particular variable NV is printout or not, depends upon whether the
corresponding IPRINT(NV) is equal to unity or not.

The printout of each dependent variable NV is given a heading stored
in TITLE(...,NV). The formal parameters ISKIP and JSKIP permit the
selective skipping of columns (I) and rows (J), when it is not required,
for any reason, to printout the complete array of values of each variable.
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4. PHYSICAL MODELLING

4.0 Introduction

This chapter describes the portion of HISS which calculates the
physical properties required in the solution procedure.

4.1  AUX

The general policy is to confine all tasks associated with phy-
sical modelling to subprogram AUX. Thus, the calculation of density o,
effective diffusion coefficient I and sources and sinks s of the depen-
dent variables are performed in separate member subroutines of AUX.
There are five such subprograms in AUX, namely, DENSTY, VISCOS, GAMMA,
SOURCE, and SPECIE.

DENSTY
This subroutine calculates densities Pp U[RHO(I,Jﬂ and p;[RHOD(I,Jﬂ
in accordance with the discussion of section 1.7.

VISCoS

The function of VISCOS is to calculate the laminar and turbulent
viscosity. In its present form, the major function is to store the
turbulent viscosities in the array- AMUT(I,Jd).

VISCOS also performs the function of calculating for the N and S
boundaries, the effective boundary diffusion based upon the semi-logarith-
mic law-of-the-wall. These diffusion coefficients are stored respectively
in the arrays GAMN(I) and GAMS(I).

GAMMA

GAMMA is used to set values to the array GAM(I,J). GAM(IJ) is
calculated from the formula appropriate to the turbulence model [4]. A
call to GAMOD is then made in order to permit any modifications to be
made to the GAM array.

SOURCE

Subroutine SOURCE is used to fill the arrays SU(I,J) and SP(I,J),
there being a separate section for so doing for each dependent variable.
The terms that fill these arrays are finite-difference equivalents to
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the source/sink terms that appear in Tables 1.2-1.

SPECIE

Subroutine SPECIE is used to calculate the specie mass fraction
from knowledge of the element mass fractions, pressure and temperature.
Appendix A gives a full development of the technique employed.



5. PROBLEM DEPENDENT SECTIONS

5.0 Introduction

This chapter completes the detailed description of the functions
of the various portions of HISS by discussing the subroutines which
must be changed in order to specify a particular problem.

5.1 General policy

As mentioned briefly earlier, the main machinery of the numerical
calculation procedure is devoid of any problem-specification information.
As a general policy, such information is provided through subroutines

DATA and ALLMOD.

5.2 BLOCK DATA

BLOCK DATA serves to provide values to fluid properties, grid
distributions, program control parameters and other information specific
to each new problem, via DATA statements. The use of BLOCK DATA permits
the program to be run with compilers common to both CDC and IBM machines.

5.3 ALLMOD
Subroutine ALLMOD is composed of five member subprograms BEGIN,
GAMOD, SOMOD, UPSTRM and INJMOD.

BEGIN

The primary purpose of this subroutine is to provide initial values
to all the dependent variable arrays, fluid-property arrays and other
auxiliary arrays. The secondary purposes include provision of 'fixed'
boundary conditions on the four boundaries of the calculation domain, and
calculation of some auxiliary information required in the initializing
process.

GAMOD

The function of modifying values of the array GAM(I,J) can be per-
formed in GAMOD. Often, it is necessary to change only the boundary
values of GAM; for instance, the diffusion coefficients relating to the
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vg]ocity component normal to a wall boundary are set to zero at the
boundary itself. The incorporation of wall functions, however, is not
performed in GAMOD; this function being performed in SOMOD.

SOMOD

Any desired modifications to the finite-difference coefficients
AXM{I,Jd), AXP(I,J) etc., and to the source terms SU(I,J) and SP(I,Jd),
can be performed in SOMOD. There is a section in SOMOD corresponding
to each dependent variable. As mentioned briefly earlier, the provision
of wall-functions are made through SOMOD. This is achieved as follows:
first, coefficients linking boundary grid nodes with their immediate
neighbors inside the calculation domain are set to zero for each variable.
Then if an index, for example KBCS for the South boundary, is set equal
to unity, the appropriate wall flux is calculated and fed in through
SU and SP. This calculation uses the value of GAMS(I), and the corresponding
flux, FLUXS(I,NV) of the dependent variable is stored for purposes of
printout. If the index is other than unity, no change is made to the
coefficients. A similar indice, KBCN, is used for the North wall. Such
checks and modifications are made for the variables u,v,w,k,e,h, and f.

UPSTRM

The subprogram UPSTRM makes provisions to store upstream (i.e.
previous integration plane) values of major variables. These include
upstream members of the F array, stored as FU (I,J,NV), and certain other
variables used in the calculations. Such a storage is required primarily
for situations where iterations are resorted to and for calculation of
source terms.

INJMOD

This subprogram is primarily used to specify the correct flux of a
given variable through the array FINJ(NV). This array is used to modify
the source term in SOMOD when injection occurs.
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6. RESULTS AND CONCLUSIONS

6.0 Introduction
In this chapter comparison of predictions with experiment are given.

Further, sample results for two typical cases of interest in this contract

are presented.

6.1 Comparison to Experimental Data

Figure 6.1-1 shows a comparison of results computed under this
contract versus experimental data from NASA [ 7]. These results are
for normal injection of hydrogen into a supersonic air stream. The

conditions are defined in reference [7 ]. The main parameters are as

follows:
Air Stagnation Temperature = 300°K
Air Stagnation Pressure = 71.38 MN/m?
Air Mach Number = 4,05
Number of Jdets = 5
Injector Diameter = .1 cm
Jet Stagnation Pressure = .28 MN/m2
Jet Stagnation Temperature = 295°K
Jdet Mach Number = 1

The plot is made for a vertical plane aligned with the main fiow direction
and located at the center of the plate width. Three profiles of hydrogen
concentration are shown at 30, 60 and 90 jet diameters downstream of the
jet. Inspection of the figure shows excellent comparison between experi-
mental and analytical resuits. The largest deviation occurs nearest the

injector and probably can be ascribed to the elliptic nature of the flow
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in the jet region. As discussed earlier the flow was forced to be para-
bolic 1in this region. Thus, as the distance from the region increases,
where the flow is parabolic, agreement between calculation and data is
better.

Also shown in Figure 6.1-1 is a plot of the experimental and computed
shock tocation. The computed shock Tocation was taken as occurring at the
peak pressure at a given station between the wall and the outer edge of
the computation region. Again this comparison shows excellent correlation
with experiment.

The correlation discussed above is a strong argument for the validity
of the main results of this work which are described in the remaining
part of this chapter. The cold flow case contains most of the physics of
the cases of interest, namely supersonic compressible flow with a subsonic
inner layer and strong cross stream interactions.

6.2 Presentation of Typical Results

6.2-1 Introduction

Results for ten cases were calculated for this contract by the techni-
que described in the first five chapters. For each case profiles of 19
variables described earlier were computed for a grid of 12 grid lines
transverse to the flow and 20 grid lines normal to the flow for a total
of 240 points at each station in the main flow direction. Computations
were made for several hundred stations. Thus, the total number of
variables computed approaches nearly one-million for each case. In this
section results for two typical cases will be presented. These results
consist of hydrogen concentration, temperature and pressure distributions
at three axial locations and at two Tocations transverse to the main flow

direction.
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6.2-2 Definition of Cases

One case for normal injection (case 1) and one case for parallel

injection (case 9) are described in this chapter.

The geometrical con-

figuration of these cases are shown in Figures 6.2-1 and 6.2-2 respectively.

Table 6.2 defines the flow and thermal properties.

Table 6.2

Definition of Properties

Location Property (units) Case 1 Case 9
Main Stream Flow speed (m/s) 675 1585.2
Conditions

Temperature (°K) 70.6 1178.6
Mass fraction N2 .7676 .487
Mass fraction 02 .2325 .263
Mass fraction H20 0.0 .25
Pressure (N/m2) 8720.0 179300.0
Jet Flow speed (m/s) 1210.0 2039.4
Conditions
Temperature (°K) 250.0 150.3
Mass fraction H2 1.0 1.0
Pressure N/m2 212000.0 179300.0
Mass flow kg/sec .000165 .0109

6.3 Graphs of Results

A1l data are presented for planes normal to the wall and parailel with

the main flow direction.

One of these planes is located in the transverse

direction directly at the hydrogen jet centerline and the other is located

between jets (see Figures 6.2-1 and 6.2-2).

The comparison of profiles at
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a given station in these two planes indicates the mixing rate in the trans-
verse direction. Comparison of profiles in a given plane at various main
flow stations indicates the rate of movement of hydrogen in a direction
normal to the flow.

Figures 6.3-1 through 6.3-3 are for normal injection (case 1).
Figure 6.3-1 shows the distribution of hydrogen in any form at three axial
locations (.118m, .216m and .246n). The first profile is before the injec-
tion point (.196m) and therefore no hydrogen is present. At the .216m
location, the hydrogen concentration levels (less than .01} indicate that
substantial mixing has occurred, and the profiles indicate that mixing
is primarily in the y direction. (The close spacing of the adjacent
injectors Timits x direction mixing.) Examination of the results at
the .246m station shows continuing movement of hydrogen upward with an

attendent smoothing of the profile, as would be expected.

The temperature profiles of Figure 6.3-2 indicate that after injection
and combustion that Tittle transverse thermal gradient exists. This 1is
partly due to the fact that the flame front is at the outer layer of the
hydrogen zone which tends to diffuse the temperature in the transverse
direction. Also it is seen that the reaction of hydrogen moves the thermal
boundary layer outward from the plate with movement in the main flow
direction.

The pressure distribution for case 1 is shown in Figure 6.3-3. It
exhibits the qualitative behavior one would expect. There is little
transverse pressure difference due to the low velocities in that direction.
A pressure spike can be seen downstream of the jet indicating a shock.

The pressure below the shock is essentially uniform at a higher value
than the free stream. It must be emphasized that the pressure distribu-

tion in the jet region is subject to error due to the fact that the flow
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was forced to be parabolic when in actuality there is some upstream effect
caused by the jet.

Figures 6.3-4 through 6.3-6 are results for case 9 which is paraliel
injection. The diameter of the jets and jet spacing are much Targer than
for case 1. The profiles at injection (Z=0) show that there is little

mixing of hydrogen between jets. However, as the flow moves forward the
mixing increases such that the concentration of hydrogen between jets is

roughly 50% of the hydrogen concentration in line with the jet at Z=.36 meter.
However, these figures show that in the normal direction the movement of
hydrogen upward between jets is not very effective. This is due to the low
normal velocities for the parallel injection case. The temperature distri-
bution in Figure 6.3-5 indicates a higher temperature between jets even
though the hydrogen concentration is lower. This is because the combustion
occurs at the fringe of the hydrogen zone. The combustion zone upper surface
is indicated by the "spikes" in the temperature profile. This combustion is
seen to grow with movement downstream. The pressure distribution shown in
Figure 6.3-6 does not indicate any shocks. At the injection station (Z=0),
the flow expands in the Tow density region. However, at downstream locations

the pressure becomes uniform at approximately the free stream value.

6.4 Conclusions and Recommendations

Qualitatively the results calculated by the method deyeloped herein
appear to be correct. Further comparison with cold flow data also show
excellent agreement. The computational time for these results is excellent
(1 minute on a CDC 7600).

The assumption of parabolic flow in the injection region needs improve-
ment because both data and calculations made in this work indicate that the
pressure distribution is affected upstream by the jet. Recirculation,

however, is probably not important. What is needed is a technique to allow
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the pressure to be calculated via an elliptic procedure and the velocity by
a parabolic one. Such a technique is advantageous over fully elliptic

procedure because storage and computation time are much lower.
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8. NOMENCLATURE

turbulence constant (Table 1.2-2)
specific heat

turbulence constant (Table 1.2-2)
turbulence constant (Table 1.2-2)

law of wall constant (Table 1.2-2)

mass fraction hydrogen in any form

24y 242
stagnation chemical enthalpy (me.h° + E—i%—i!—
i

enthalpy of formation

kinetic energy of turbulence
constant in law of wall (Tahle 1.2-2)
mass fraction of specie i

pressure
parameter defined by Equation (1.6-6)

pressure correction
Prandt1 Number

universal gas constant

source term for ¢ equation

temperature

corrected and uncorrected velocity in x direction
corrected and uncorrected velocity in y direction
corrected and uncorrected velocity in x direction
molecular weight

coordinate defined in Figure 1.2-1

coordinate defined in Figure 1.2-1

coordinate defined in Figure 1.2-1
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NOMENCLATURE (Continued)

r¢ conduction transport coefficient in ¢ equation
€ dissipation rate of turbulence

u laminar viscosity

Haff effective viscosity (laminar + turbulent)

Mg turbulent viscosity

0 density

%4 laminar Prandtl or Schmidt Number for ¢

St.4 turbulent Prandtl or Schmidt Number for ¢

¢ general dependent variable in conservation equation
SUBSCRIPT

ref reference value
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APPENDIX A

A.0 Background

Reference [6] describes an equilibrium chemistry model developed and
used in conjunction with a computer program to predict the properties in a
hydrogen-oxygen flame. The main features of the model are described below.
Four equilibrium reactions are assumed as follows:

0+0+ 0, (1)
H+H > H (2)
0+ OH + H,0 (3)
0+H~> OH (4)

The six species involved in these reactions are considered to be present
with nitrogen which is inert. In developing the equations to predict the
equilibrium concentration of the species, two quantities are defined,

namely
o o
X=mnp +mp+ m + —m 5
0, * 10 * 5 ™0 * gy MoK (5)
W W
Ho H
= q + + — —_— 6
T T TH T Ty o 0 T oy Mo ()

where X is the total fraction of oxyagen in any form and F is the total
fraction of hydrogen in any form. Since the molecular weight of the various
oxygen species is approximately equal to-that of nitrogen it is assumed that
the rate of diffusion of nitrogen is equal to that of the oxygen; and, there-
fore, nitrogen is present at any location in a fixed ratio to the fraction of
oxvgen compounds. This fraction, OFAC, is assumed constant and equal to the
fraction of oxygen in the air being used as the oxidizer. Thus,

X = (OFAC)(X + mN_) (7)
2
The total mass fraction must be unity which gives
X+my +F=1 (8)
2
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Substituting equation (7) into equation (8) and solving for X gives
X = (OFAC){(1 - F) (9)

Therefore, if F is known, X can be determined by equation (9).
From thermodynamic considerations the equilibrium constant is defined
for the reaction aA + bB » ¢C by

XC
p = —L PETE (10)
A *B

where P is in atmospheres.

For each of the four reactions in the present model c-a-b = -1
It is convenient to express the concentrations in terms of mass fractions.
Noting that

W,

= -1y,
m; = o X

; (11)

and substituting equation (11) into equation (10) gives

. W mC
Kp = KoPH aEb= aCb (12)
wA wB mA mB

Thus the equilibrium equations for the reactions (1 - 4) can be written

Ky = 7;5‘ (13)
m

G =% (14)

0

. ™0

K3 = Ty mon (15)
m

. Moy

Ki = g ™ m (16)
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The condition of equilibrium is expressed by using four equilibrium
constants for the four chemical reactions. Once F and X are specified,
the six species (mH > My, My _s MQs MOy, mHZO) can be determined from
equations (5), (6), (13), (14), (15), and (16) in which these species
are unknowns. The procedure adopted in [1] was to solve a differential
equation for the distribution of F and then to solve equations (5), (6),
(13), (14), (15), and (16) for the concentration of individual species.

In reference [1] the values of species concentration just upstream of

the point being considered were used to choose the largest term in both

F and X. The mass fractions of remaining species were calculated from
equations (13 - 16) using the upstream temperature for specifying the
equilibrium constants and the values of the upstream species mass fraction
which constitute the largest terms in F and X. New values of mass
fraction of the largest species were calculated from equations (5) and (6)
using the newly calculated values for the remaining species. The process
was repeated until convergence to a specified 1imit was achieved. There
are at least three major deficiencies with this approach:

(1) Extreme care must be used in specifying the initial
mass fractions; otherwise, the iteration procedure
diverges;

(2) Near the stoichiometric point several of the species have
mass fractions which are approximately equal. This
causes different species to have the largest mass fraction
in successive steps in the iteration procedure resulting
in instability; and

(3) A large amount of computer logic is required to handle
the extreme variations in the input parameters resulting
in relatively large computational times.

The continued use of the model and equations employed in reference [1] is
recommended in this paper. However, a new solution procedure is proposed.

The remaining discussion defines the proposed new solution procedure
and gives some results and conclusions regarding its application.
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A.1 Derivation of Solution Procedure

The present procedure is based on the reduction of the number of
variables under consideration. Two equations are derived as follows.
Equations (13 - 16) are solved to give the relationships:

=1
mH -W{m_l; (17)

1
< 2=, (s)

Kz Ky
m m \lm (19)
H,0 qr—r H 0
2 K1 K2 2 2
K3

Mox = mm\lm_oz (20)

It is convenient to define the following parameters:

A=t (21)
Ky

B -t (22)
Ko

- K3 K

C = (23)
Ky \le

_ K-

D= — (24)
K1 Kz

Using equations (17 - 20) to eliminate mg, MH_0s My and mgy from
equations (5) and (6) gives:
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< ng + o, [+ S omy + 165 Yy

X = mg,, + mo,, [} *+3 CmH2 Y D mH%] (25)
l- A -1—-

My, [} *3 Cmoé] + “mHZ [} Y Dmoé] (26)

where the definitions given by equations (21 - 24) have been used.
These equations have the form of a quadratic equation:

-n
i}

and solution [3]

Note that a and b are always positive and ¢ is always negative. Since
u>0, the physically meaningful root is

w= —2C (27)
b + wbz - dac
This particular form of quadratic expression is chosen since it does not

require subtraction and gives greater precision. Using equation (27) to
express the solution of equations (25) and (26) gives

mo_ i
2 Is 8 = 16 = 5 8 = 16 3 2
B+§CmH2+ﬁD\|mH2 B+§CmH2+'1—7D mH2
+ + X
2 2
(28)
M2 TET T ; 1F-‘ 2
A g7 D\mg, | WA + 57 0 Ymo, -
+ +(1+§C Mg F
2 2 2
(29)
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Equations (28) and (29) contain the unknowns mg, and mHz. Before detailing
the solution procedure several properties of these equations will be
discussed. Table I gives the values of Ki, K3, K3, Ki, 7§,-§; C, and D for
the temperatures from 100 to 6000 K at a constant PW product of 2.5 (cor-
responding approximately to 1/10 atmosphere). Note that while the individual
constants vary from less than 1 to 10190, the groups appearing in equations
(28) and (29) vary much less and can be easily processed on a digital com-
puter. Second it is to be observed that the equations have been derived so
that a "natural" relationship has been established between mo,, and X, and
my, and F, i.e. as X-0, m02+0, and as F-0, mH2+0. It should a1so be observed
that mg, and m,, can never be less than zero or greater than 1. Finally,
neither equation becomes indefinite as my, or my, approach zero. Thus, the
equations are well-behaved and can be readily solved for wide variations in
temperature and pressure.

The solution procedure is described next. A value of mH2 is guessed
in the following way. If the value at the equivalent upstream station is
known, then that value is used; otherwise, a value of zero will always
Tead to a converged solution. This assumed value of mH is substituted
into equation (28) which yields my . Then the computed va1ue of My,
substituted into equation (29) which allows calculation of a new value of
mHz. The assumed and calculated values of my, are compared. If their
values differ by more than a specified convergence criteria, the calculated
value of My, is taken as the assumed value and the process described above
is repeated until convergence is obtained. The behavior of this solution
technique is shown in Figure A.1-1.

Figure I shows with the broken line a plot of My, calculated versus
my, assumed. The correct value is achieved when the two values are equal.
The locus of points for this situation is a straight 1ine with a slope of
unity. If my, assumed is less than the correct value, the figure shows
the calculated value will always be larger. Thus, when this calculated
value of My, is taken as the assumed value, the resulting newly calculated
value will be closer to the correct one. The same argument can be made to
show that if the initial assumed value of My, is too large, the iteration
process will again cause convergence to the correct value.

62



101

Z+Solution Locus

Calculated
hﬂ}qz

— ——

—
e

—

T T~ From Equations
— (28)and (29)

Assumed My, 10

A.1-1. Graphical Plot of Trial-and-Error Solution

63



A.2 Typical Results

The solution procedure described above was programmed on a digital
computer and used to determine equilibrium concentrations for variation
in F and X from zero to one for temperatures from 200 to 5700 K. The
product PW was taken at 2.5 (approximately 1/10 atmosphere pressure).
Table II shows these calculated results. The residuals in F and X are
shown in the last two columns. Their values indicate that great precision
can be obtained with this method. The convergence criteria for these
calculations was

.001 my

|mH2ca1cu1ated B mHzassumed| < »calculated

Greater precision could easily be achieved by a stricter convergence
criteria; however, the present one is sufficient for most practical cal-
culations.

It is concluded that the method offers a reliable, simple and extremely
fast technique for solving the equilibrium equations arising from the
chemical model considered in this work.
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TABLE I.

Temp. K K‘L K Kus R B C D
200 5.0+100 3.1E+99 2.6+100 2.6+100 4.4E-51 1.7E-50 2.1E+00 2.5E+50
400 2.8E+52 2.7E+58 3.2E+51 6.2E+59 5,9E-27 6.0E-30 1.1E-04 4.3E+29
600 2.3E+33 4.3E+36 5.8E+32 9.0E+37 2.0E-17 4.7E-19 5.7E-03 1.0E+19
800 5.9E+23 4.9E+25 2.2E+23 9.3E+26 1.2E-12 1.4E-13 4.0E-02 4.8E+13

1000 9.7E+17 1.2E+19 4.5E+17 2.2E+20 1.0E-09 2.7E-10 1.2E-01 2.8E+10

1200 1.2E+14 5,0E+14 7.0E+13 8.2E+15 8.7E-08 4.4E-08 2.7E-01 1.9E+08

1400 2.1E+11 3.5E+11 1.2E+11 5.4E+12 2.1E-06 1.6E-06 4.7E-01 5.5E+06

1600 1.7E+09 1.5E+09 1.1E+09 2.2E+10 2.4E-05 2.5E-05 7.0E-01 3.8E+05

1800 3.9E+07 2.1E+07 2.7E+07 3.0E+08 1.5E-04 2.1E-04 9.5E-01 4.6E+04

2000 1.9E+06 7.0E+05 1,.4E+06 9.8E+06 7.2E-04 1.1E-03 1.2E+00 8.7E+03

2200 1.5E+05 4,3E+04 1.2E+05 5.8E+05 2.5E-03 4.8E-03 1.4E+00 2.2E+03

2400 1.9F+04 4.2E+03 1.6E+04 5,5E+04 7.0E-03 1.5E-02 1.7E+00 6.9E+02

2600 3.4E+03 5.8E+02 2.8E+03 7.6E+03 1.7E-02 4.1E-02 2.0E+00 2.6E+02

2800 7.5E+02 1.0E+02 6.4E+02 1.3E+03 3.6E-02 9.6E-02 2.2E+00 1.1E+02

3000 2.0E+02 2.4E+01 1.7E+02 3.1E+02 7.0E-02 2.0E~01 2.5E+00 5,.5E+01

3200 6.3E+01 6.8E+00 5.7E+01 8.5E+01 1.2E-01 3.8E~01 2.7E+00 2.9E+01

3400 2.3E+01 2.1E+00 2.1E+01 2.7E+01 2.0E-01 6.7E~01 2.9c+00 1.6E+01

3600 9.3E+00 7.9E-01 8.6E+00 9.8E+00 3.2E-01 1.1E+00 3.1E+00 1.0E+01

3800 4,1E+00 3.2E-01 3.8E+00 3.9E+00 4.9E-01 1.7E+00 3.3E+00 6.5E+00

4000 1.96+00 1.4E-01 1.8E+00 1.7E+00 7.0E-01 2.6E+00 3.5E+00 4.4E+00

4200 1.0E+00 6.8E-02 9.8E-01 8.3E-01 9.8E-01 3.8E+00 3.7E+00 3.0E+00

4400 5.5E-01 3.5E-02 5.4E-01 4.2E-01 1.3E+00 5.3E+00 3.8E+00 2.2E+00
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TABLE I.

(Continued)
Temp. K1 K; K3 _ Kg 7-\- _ __E i
4600 3.2E-01 1.8E-02 3.1E-01 2.2E-01 1.7E+00 7.2E+00
4800 1.9E-01 1.0E-02 1.9E-01 1.3E-01 2.2E+00 9.6E+00
5000 1.2E-01 6.4E-03 1.2E-01 7.7E-02 2.8E+00 1.2E+01
5200 7.9E-02 4.0E-03 7.8E-02 4.8E-02 3.5E+00 1.5E+01
5400 5.3E-02 2.5E-03 5.3E-02 3.1E-02 4.3E+00 1.9E+01
5600 3.6E-02 1.7E-03 3.6E-02 2.0E-02 5.2E+00 2.4E+01
5800 2.6E-02 1.1E-03 2.6E-02 1.4E-02 6.1E+00 2.9E+01
6000 1.8e-02 8.1E-04 1.8E-02 9.8E-03 7.2E+00 3.5E+01
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TABLE II.

Temp. F X mH2 m02 my My Moy mH20 RESf RE5;*
200 0 .23200 .00000 .23200 O 0 0 .00000 -.00000 O
200 .2 .18560 .17677 .00000 0 0 0 20903 -.00020 O
200 4 .13920  .38259 .00000 0 0 0 15665 -.00005 0O
200 .6 .09280 .58840 .00000 O 0 0 10441 -.00001 0O
200 .8 .04640  .79419 .00000 0 0 0 05228 ~.00008 O
200 1.0 .00000 1.00000 .00000 0 0 0 00001 -.00000 O
700 0 .23200  .00000 .23200 0 0 0 .00000 -.00000 O
700 .2 .18560  .17677 .00000 0 0 0 .20903 -.00020 0
700 .4 .13920  .38259 .00000 O 0 0 .15665 -.00005 O
700 .6 .09280  .5884C .00000 O 0 0 .10441 -.00001 O
700 .8 .04640  .79419 .00000 0 0 0 .05228 -.00008 O
700 1.0 .00000 1.00000 .00000 0 0 0 .00001 -.00000 0

1200 0 .23200  .00000 .23200 0 0 0 .00000 -.00000 0

1200 .2 .18560  .17677 .00000 0 0 0 .20903 -.00020 0

1200 .4 .13920  .38259 .00000 O 0 0 .15665 -.00005 0

1200 .6 .09280  .58840 .00000 O 0 0 .10441 -,00001 0O

1200 .8 .04640 .79419 .00000 O 0 0 .05228 -.00008 O

1200 1.0 .00000 1.00000 .00000 O 0 0 .00001 -.00000 0

1700 0 .23200 .00000 .23196 .00000 .00004 O .00000 -.00000 0

1700 .2 .18560  .17675 .00000 .00003 .00000 0 .20902 -.00020 0

1700 4 .13920  .38255 .00000 .00004 .00000 O .15665 -.00005 O

* Residual in F equation (29)
** Residual in X equation (28)
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TABLE II.

(Continued)
Temp. F X my m, m, my Moy L REsr REs:*
1700 .6  .09280 .58835 .00000 .00005 .00000 O .10441 -.00001 0
1700 .8  .04640 .79413 .00000 .00006 .00000 O .05228 -.00008 O
1700 1.0 .00000 .99993 .00000 .00007 .00000 O .00000 -.00000 0
2200 0  .23200 .00000 .22970 .00000 .00230 .00000 .00000 -.00000 0
2200 .2  .18560 .17574 .00000 .00105 .00000 .00034 .20867 -.00020 0
2200 .4  .13920 .38106 .00000 .00155 .00000 .00017 .15647 ~-.00005 0
2200 .6  .09280 .58648 .00000 .00192 .00000 .00009 .10431 -.00001 0
2200 .8  .04640 .79196 .00000 .00223 .00000 .00004 .05224 -.00008 O
2200 1.0 .00000 .99749 .00000 .00251 .00000 .00000 .00000 -.00000 0
2700 0  .23200 .00000 .20310 .00000 .02890 .00000 .00000 -.00000 0
2700 .2  .18560 .16687 .00005 .01034 .00045 .00620 .20189 -.00019 0
2700 .4  .13920 .36746 .00001 .01534 .00016 .00317 .15311 -.00004 0
2700 .6  .09280 .56941 .00000 .01910 .00007 .00170 .10253 -.00001 0
2700 .8  .04640 .77200 .00000 .02223 .00002 .00073 .05148 -.00007 0
2700 1.0 .00000 .97501 .00000 .02499 .00000 .00000 .00000 -.00000 0
3200 0  .23200 .00000 .10689 .00000 .12511 .00000 .00000 -.00000 0
3200 .2 .18560 .13505 .00142 .04597 .01444 .03815 .15067 -.00011 0
3200 .4  .13920 .31439 ,00019 .07014 .00527 .02124 .12800 -.00003 0
3200 .6  .09280 .50086 .00004 .08853 .00231 .01175 .08933 -.00001 0
3200 .8  .04640 .69065 .00001 .10395 .00086 .00514 .04586 -.00006 0
3200 1.0 00000 .88249 .00000 .11751 .00000 .00000 .00000 -.00000 0
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TABLE II.

(Continued)
Temp. F X mPE m02 my, m, Mo M, 0 RES¥  RES*
3700 0  .23200 .00000 .02210 .00000 .20990 .00000 .00000 ~-.00000 0
3700 .2 .18560 .07874 .00406 .11326 .08998 .05854 .04102 -.00000 0
3700 .4 .13920 .20737 .00102 .18380 .04514 .04766 .05420 -.00000 0
3700 .6  .09280 .35319 .00025 .23987 .02252 .03103 .04604 -.00010 0
3700 .8  .04640 .50841 .00004 .28779 .00897 ~.01483 .02640 -.00002 0
3700 1.0 .00000 .66970 .00000 .33030 .00000 .00000 .00000 -.00000 0
4200 0  .23200 .00000 .00357 .00000 .22843 .00000 .00000 -.00000 0
4200 .2 .,18560 .02919 .00167 .16888 .15622 .02599 .00366 -.00000 0
4200 .4 .13920 .09410 .00072 .30323 .10272 .03068 .00775 -.00001 0
4200 .6  .09280 .35319 .00025 .23987 .02252 .03103 .04604 -.00010 0
4200 .8  .04640 .27764 .00005 .52084 .02758 .01415 .00614 -.00000 0
4200 1.0 .00000 .38593 .00000 .61407 .00000 .00000 .00000 -.00000 0
4700 0  .23200 .00000 .00076 .00000 .23124 .00000 .00000 0 0
4700 .2 .18560 .00904 .00045 .19045 .17716 .00824 .00027 0 0
4700 .4 .13920 .03336 .00023 .36589 .12760 .01140 .00072 0 0
4700 .6  .09280 .06985 .00010 .52942 .08188 .01059 .00097 0 0
4700 .8  .04640 .11632 .00002 .68320 .03949 .00659 .00078 0 0
4700 1.0 .00000 .17119 .00000 .82881 .00000 .00000 .00000 0 0
5200 0  .23200 .00000 .00022 .00000 .23178 .00000 .00000 0 0
5200 .2 .18560 .00308 .00013 .19675 .18278 .00283 .00003 0 0
5200 .4 .13920 .01195 .00007 .38780 .13517 .00413 .00008 0 0

* Residual in F equation (29)
** Residual in X equation (28)
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TABLE II.

(Continued)
*k
Temp. F X LT My, my my Mo mH20 RES; RES,
5200 .6 .09280 .02615 .00003 .57360 .08889 .00402 .00011 0 0
5200 .8 .04640  .04526 .00001 .75458 .04385 .00261 .00009 0 0
5200 1.0 .00000 .06891 .00000 .93109 .00000 .00000 .00000 0 0
5700 0 .23200 .00000 .00008 .00000 .23192 .00000 .00000 0 0
5700 .2 .18560 .00122 .00005 .19871 .18448 .00113 .00000 0 0
5700 .4 .13920 .00483 .00003 .39507 .13758 .00168 .00001 0 0
5700 .6 .09280 .01075 .00001 .58916 .09121 .00166 .00002 0 0
5700 .8 .04640 .01889 .00000 .78105 .04535 .00109 .00001 0 0
5700 1.0 .00000 .02918 .00000 .97082 .00000 .00000 .000QO 0 0

* Residual in F equation (29)
** Residual in X equation (28)
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APPENDIX B

DEFINITION OF TERMS APPEARING IN COMMON STATEMENTS

AGEOM
AK
AKFAC

AMU
AMUREF
AMUT
BXE
BYN
cD
CDQR
CDRT
CDTQ
CP
CPDCV

C1

€2

DEN

DZ

EE

EX

FLOINJ
FLUXN, FLUXS

FRA

FRAM

FXM, FXP, FYM, FYP
GAMN, GAMS

GASCON

factor in grid expansion defined in section 3.1
mixing length constant, K

factor relating turbulence energy to mean motion
energy

laminar viscosity, u

reference laminar viscosity

turbulent viscosity, ug

width of flow region along x-coordinate
width of flow region along y-coordinate
constant in turbulence model, CD

Cp raised to 1/4 power

Cp raised to 1/2 power

Cp raised to 3/4 power

specific heat

specific heat at constant pressure divided by
specific heat at constant volume

constant in turbulence model, C;

constant in turbulence model, C,

reference density

step length in z direction

constant in law-of-the-wall, E

factor by which forward step size is increased
mass flow rate injected by a jet

flux of dependent variable at N and S boundaries
respectively

fraction of boundary height used in calculating
forward step

maximum fraction of boundary layer height used in
calculating forward step

interpolation factors to indicate distance of a
pressure node from the neighboring velocity node

boundary value of GAM at N and S boundaries,
respectively

universal gas constant
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GREAT
H

HO
TINJ
IMAX

INJSTP
INTEX
IPRINT

IREF
ISOLVE

ISTEP
ISTR

ISWp

ITERF
ITERM
IXY

JM
JMAX

JSTR

JSWP

KBCN, KBCS

L
LASTEP
LCV
LP1

M

MCV
MP1
NFM

large number used in limiting overflows, etc.
recovery factor

enthalpy of formation

index to control entry to INJMOD

maximum value of I for which storage locations
are provided

value of ISTEP at injection location
index: 1 for internal flows: 2 for external flows

values of a variable printed only if corresponding
value of IPRINT is unity

reference value of I for printout

equation for a variable is solved only if corre-
sponding value of ISOLVE is unity

number of station

value of I for the first storage location for a
given variabie

index controlling direction if TDMA sweep along I
coordinate

counter for iterations on the ¢ equation
counter for iteration on the momentum equation

index controlling the first direction of a TDMA
sweep

(J - 1)JIMAX

maximum value of J for which internal storage is
provided

value of J denoting the first internal storage
location for a given variable

index denoting the direction of sweep while per-
forming TDMA sweep in y-direction

index denoting nature of N and S boundaries, respec-
tively: 1 =wall; 2 = symmetry; 3 = free.

number of grid lines minus 1 in x-direction
number of station for which integration is to end
number of main control volumes in x-direction
number of grid lines in x-direction

number of grid lines minus 1 in y-direction
number of main control volumes in y-direction
number of grid lines in y-direction

number of variable (NV)xIMAX*xJMAX



NFPMAX

NH

NH2
NH20
MMU
NNV
NN2

NO

NOH
NO2

NP JUMP

NPP
NRO

NSWP
NV
NVD
NVF
NVH
NVK
NVP
NVT
NVU
NVV
NVW
PIN
PJAY
PR
PRLAM
RETRAN
SMALL
TIN
TINJ

maximum number of variables for which printout
is arranged

identifier of atomic hydrogen concentration
identifier of molecular hydrogen concentration
identifier of water vapor concentration
identifier of viscosity

number of dependent variables

identifier of molecular nitrogen concentration
identifier of atomic oxygen concentration
identifier of OH concentration

jdentifier of molecular oxygen concentration

value equals ISTEP for printout of profile of
variables

identifier of pressure correction
identifier of density

number of TDMA sweeps on a variable

serial number of any variable

identifier for dissipation rate of turbulence
identifier for hydrogen concentration in any form
identifier for enthalpy

identifier for turbulent kinetic energy
identifier for pressure

identifier for temperature

identifier for velocity in x-direction

identifier for velocity in y-direction

identifier for velocity in z-direction

inlet pressure

resistance of laminar sublayer, P¢
Prandtl number, Pr

laminar Prandtl number/Schmidt number,
transition Reynolds number

small number used to control underflows, etc.
inlet free stream temperature

inlet jet temperature
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TITLE
TWAL
UIN
VIN
VIN
WIN
WM

XDIF
XS
Xsu

YDIF
YS
YSV
ZD

ZETA
ZINJ
ZLAST
ZRE
ZU

any title to describe calculations

wall temperature

inlet x-direction velocity

inlet y-direction velocity

velocity of jet injection

inlet free-stream velocity in z-direction
molecular weight

x-coordinates

distance between grid Tines in x-direction

width of main control volume in x-direction

width of u velocity control volume in x-direction
y-coordinates

distance between grid lines in y-direction

width of main control volume in y-direction

width of v velocity control volume in y-direction

downstream location on control volume face in z-
direction

x/BXE

Z location of injection

z location at end of integration

values of z for which printout is desired

upstream location of control volume face in z-
direction

NASA-Langley, 1976 CR—2655



